Semantic Concept Mining Based on Hierarchical Event Detection for Soccer Video Indexing

نویسندگان

  • Maheshkumar H. Kolekar
  • Kannappan Palaniappan
  • Somnath Sengupta
  • Guna Seetharaman
چکیده

In this paper, we present a novel automated indexing and semantic labeling for broadcast soccer video sequences. The proposed method automatically extracts silent events from the video and classifies each event sequence into a concept by sequential association mining. The paper makes three new contributions in multimodal sports video indexing and summarization. First, we propose a novel hierarchical framework for soccer (football) video event sequence detection and classification. Unlike most existing video classification approaches, which focus on shot detection followed by shot-clustering for classification, the proposed scheme perform a top-down video scene classification which avoids shot clustering. This improves the classification accuracy and also maintains the temporal order of shots. Second, we compute the association for the events of each excitement clip using a priori mining algorithm. We propose a novel sequential association distance to classify the association of the excitement clip into semantic concepts. For soccer video, we have considered goal scored by team-A, goal scored by team-B, goal saved by team-A, goal saved by team-B as semantic concepts. Third, the extracted excitement clips with semantic concept label helps us to summarize many hours of video to collection of soccer highlights such as goals, saves, corner kicks, etc. We show promising results, with correctly indexed soccer scenes, enabling structural and temporal analysis, such as video retrieval, highlight extraction, and video skimming.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Text Mining Support in Semantic Annotation and Indexing of Multimedia Data

This short paper is describing a demonstrator that is complementing the paper “Towards Cross-Media Feature Extraction” in these proceedings. The demo is exemplifying the use of textual resources, out of which semantic information can be extracted, for supporting the semantic annotation and indexing of associated video material in the soccer domain. Entities and events extracted from textual dat...

متن کامل

Detection of Soccer Goal Shots Using Joint Multimedia Features and Classification Rules

As digital video data becomes more and more pervasive, the issue of mining information from video data becomes increasingly important. In this paper, we present an effective data mining framework for automatic extraction of goal events in soccer videos. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The proposed multimedia data mining fram...

متن کامل

Compressed Domain Scene Change Detection Based on Transform Units Distribution in High Efficiency Video Coding Standard

Scene change detection plays an important role in a number of video applications, including video indexing, searching, browsing, semantic features extraction, and, in general, pre-processing and post-processing operations. Several scene change detection methods have been proposed in different coding standards. Most of them use fixed thresholds for the similarity metrics to determine if there wa...

متن کامل

Semantic indexing of sports program sequences by audio-visual analysis

Semantic indexing of sports videos is a subject of great interest to researchers working on multimedia content characterization. Sports programs appeal to large audiences and their efficient distribution over various networks should contribute to widespread usage of multimedia services. In this paper, we propose a semantic indexing algorithm for soccer programs which uses both audio and visual ...

متن کامل

Goal Event Detection in Soccer Videos via Collaborative Multimodal Analysis

Detecting semantic events in sports video is crucial for video indexing and retrieval. Most existing works have exclusively relied on video content features, namely, directly available and extractable data from the visual and/or aural channels. Sole reliance on such data however, can be problematic due to the high-level semantic nature of video and the difficulty to properly align detected even...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Multimedia

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009